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Abstract

We present a new proof of Ramanujan’s1�1 summation formula.
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1. Introduction

The celebrated1�1 summation theorem was first recorded by Ramanujan in his second
notebook[24] in approximately 1911–1913. However, because his notebooks were not
published until 1957, it was not brought before the mathematical public until 1940 when
G.H. Hardy recorded Ramanujan’s1�1 summation theorem in his treatise on Ramanujan’s
work [17, pp. 222–223]. Subsequently, the first published proofs were given in 1949 and
1950byHahn[16] and Jackson[20], respectively. Since these first twoproofs, several others
have been published, namely, byAndrews[2,3], Ismail[18],Andrews andAskey[4],Askey
[6], Adiga, et al.[1], Kadell [21], Fine[14, Eq. (18.3)], Mimachi[23], Corteel and Lovejoy
[13], Corteel[12], and Yee[26]. The proof given in[1] and reproduced in[7, Entry 17, p.
32] was, in fact, first given in lectures at the University of Mysore by K. Venkatachaliengar
in the 1960s. The proofs by Corteel andYee are combinatorial. In particular, Yee devised a
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bijection between the partitions generated on each side of the1�1 identity. There is also an
unpublished proof by Liu[22].
In this paper, we use partial fractions to give a new, short proof of Ramanujan’s1�1

summation theorem. Watson[25] utilized partial fractions to prove some of Ramanujan’s
theoremsonmock theta functions. In the past few years, it has become increasingly apparent
that Ramanujan employed partial fractions in proving theorems in the theory ofq-series,
in particular, about mock theta functions, and in other areas of analysis as well; see, e.g.,
[5, Chapter 12],[8]. This paper is motivated by the work in[5, Chapter 12]and[19] and
continues the work in[10]. Of course, we have no evidence that Ramanujan found the proof
that we give here.We record Ramanujan’s1�1 summation ([7, Entry 17, p. 32]) in the form
recorded in his second notebook.

Theorem 1.1. Suppose that|�q| < |z| < 1/|�q|. Then

1+
∞∑

k=1

(1/�; q2)k(−�q)k

(�q2; q2)k
zk +

∞∑
k=1

(1/�; q2)k(−�q)k

(�q2; q2)k
z−k

=
{

(−qz; q2)∞(−q/z; q2)∞
(−�qz; q2)∞(−�q/z; q2)∞

} {
(��q2; q2)∞(q2; q2)∞
(�q2; q2)∞(�q2; q2)∞

}
. (1.1)

In (1.1) and the remainder of the paper, we use the customary notation(x; q)0 := 1,
(x; q)n := ∏n−1

k=0

(
1− xqk

)
forn�1, and(x; q)∞ := ∏∞

k=0(1−xqk). Here and throughout
this article, we assume that|q| < 1.
We present our proof of Theorem1.1 in the next section.

2. Proof

We require theq-binomial theorem[7, Entry 2, p. 14],[14, Eq. (6.2)]in our proof.

Lemma 2.1(The q-binomial theorem.).If |q|, |a| < 1, then

(at; q)∞
(a; q)∞

=
∞∑

n=0

an(t; q)n

(q; q)n
.

Proof of Theorem 1.1.Applying the Mittag–Leffler theorem, we consider the partial frac-
tion decomposition of the finite product

(−qz; q2)N(−q/z; q2)N

(−�qz; q2)N+1(−�q/z; q2)N+1
=

N∑
n=0

{
A(n)

1+ �q2n+1z
+ B(n)

z + �q2n+1

}

+FN(q; z), (2.1)

whereFN(q; z) is an entire function ofz.
Note that the left side of (2.1) tends to 0 asz → ∞, which can be seen immediately by

multiplying both the numerator and the denominator byzN+1. The finite sum on the right
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side also tends to 0 asz → ∞. ThereforeFN also tends to 0 asz → ∞. HenceFN is a
bounded entire function and must be equal to 0, sinceFN tends to 0 asz → ∞. Since all
the poles are simple, the values ofA(n) andB(n) are calculated by, forn�0,

A(n) = lim
z→ 1

−�q2n+1

(1+ �q2n+1z)
(−qz; q2)N(−q/z; q2)N

(−�qz; q2)N+1(−�q/z; q2)N+1

= (q−2n/�; q2)n(1/�; q2)N−n(�q2n+2; q2)N

(q−2n; q2)n(q2; q2)N−n(��q2n+2; q2)N+1
, (2.2)

while

B(n) = lim
z→−�q2n+1

(z + �q2n+1)
(−qz; q2)N(−q/z; q2)N

(−�qz; q2)N+1(−�q/z; q2)N+1

= −�q2n+1(�q2n+2; q2)N(q−2n/�; q2)n(1/�; q2)N−n

(��q2n+2; q2)N+1(q−2n; q2)n(q2; q2)N−n

. (2.3)

By applying the elementary identity

(xq−n; q)n = (−1)nxnq−n(n+1)/2(q/x; q)n,

we further simplify (2.2) and (2.3) to find that

A(n) = (1/�)n(��q2; q2)n(1/�; q2)N−n(�q2; q2)N+n

(q2; q2)n(q2; q2)N−n(��q2; q2)N+n+1
(2.4)

and

B(n) = −�q2n+1(1/�)n(��q2; q2)n(1/�; q2)N−n(�q2; q2)N+n

(q2; q2)n(q2; q2)N−n(��q2; q2)N+n+1
. (2.5)

Assuming that 1/|�| < 1 and|q2/�| < 1, substituting (2.2) and (2.3) into (2.1), letting
N → ∞, and applying Tannery’s theorem[9, Section 49],[15, Section 63]to justify letting
N → ∞ under the summation sign, we obtain

(−qz; q2)∞(−q/z; q2)∞
(−�qz; q2)∞(−�q/z; q2)∞

= (1/�; q2)∞(�q2; q2)∞
(q2; q2)∞(��q2; q2)∞

∞∑
n=0

(1/�)n(��q2; q2)n

(q2; q2)n(1+ �q2n+1z)

−1

z

(1/�; q2)∞(�q2; q2)∞
(q2; q2)∞(��q2; q2)∞

∞∑
n=0

�q2n+1(1/�)n(��q2; q2)n

(q2; q2)n(1+ �q2n+1/z)
.

Multiplying both sides by(q
2;q2)∞(��q2;q2)∞

(�q2;q2)∞(�q2;q2)∞ , we arrive at

(−qz; q2)∞(−q/z; q2)∞(q2; q2)∞(��q2; q2)∞
(−�qz; q2)∞(−�q/z; q2)∞(�q2; q2)∞(�q2; q2)∞

= (1/�; q2)∞
(�q2; q2)∞

∞∑
n=0

(1/�)n(��q2; q2)n

(q2; q2)n(1+ �q2n+1z)
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− (1/�; q2)∞
(�q2; q2)∞

1

z

∞∑
n=0

�q2n+1(1/�)n(��q2; q2)n

(q2; q2)n(1+ �q2n+1/z)

= (1/�; q2)∞
(�q2; q2)∞

∞∑
m=0

zm
∞∑

n=0

(1/�)n(��q2; q2)n

(q2; q2)n
(−�q2n+1)m

+ (1/�; q2)∞
(�q2; q2)∞

∞∑
m=1

z−m
∞∑

n=0

(1/�)n(��q2; q2)n

(q2; q2)n
(−�q2n+1)m. (2.6)

Note thatwehaveassumed further that|�q| < |z| < 1/|�q|so that thegeometric expansions
in the last equality are valid and the inversions of the order of summations in the last equality
are valid by absolute convergence of the series.
Comparing the coefficients ofzm in (1.1) and (2.6), it suffices to show that

(1/�; q2)m(−�q)m

(�q2; q2)m
= (1/�; q2)∞

(�q2; q2)∞

∞∑
n=0

(1/�)n(��q2; q2)n

(q2; q2)n
(−�q2n+1)m

and

(1/�; q2)m(−�q)m

(�q2; q2)m
= (1/�; q2)∞

(�q2; q2)∞

∞∑
n=0

(1/�)n(��q2; q2)n

(q2; q2)n
(−�q2n+1)m,

that is,

(�q2m+2; q2)∞
(q2m/�; q2)∞

=
∞∑

n=0

(q2m/�)n(��q2; q2)n

(q2; q2)n

and

(�q2m+2; q2)∞
(q2m/�; q2)∞

=
∞∑

n=0

(q2m/�)n(��q2; q2)n

(q2; q2)n
,

and these are true by applying Lemma2.1 with (a, t) = (q2m/�, ��q2) and (a, t) =
(q2m/�, ��q2), respectively. Therefore we have proved (1.1) for the region|q3| < |�q| <

|z| < 1/|�q| < 1/|q|. By applying analytic continuation, we complete the proof.�

In a future paper, we shall use a similar method to prove the following lemma, which
yields theq-binomial theorem as a special case. Details will be given in[11].

Lemma 2.2. For |�/�| < 1 and|q2/�| < 1,we have
(−�qz; q2)∞(−q/z; q2)∞(q2; q2)∞(��q2; q2)∞

(−�qz; q2)∞(−�q/z; q2)∞(�q2; q2)∞(��q2; q2)∞

= (�/�; q2)∞
(��q2; q2)∞

∞∑
n=0

(�/�)n(�q2/�; q2)n(��q2; q2)n

(q2; q2)n(�q2; q2)n(1+ �q2n+1z)

−1

z

(1/�; q2)∞
(�q2; q2)∞

∞∑
n=0

�q2n+1(1/�)n(�q2; q2)n(��q2; q2)n

(q2; q2)n(��q2; q2)n(1+ �q2n+1/z)
.
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